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The effect of surface curvature on the low-wavenumber-frequency spectrum of 
turbulence-induced surface pressure fluctuations is considered and an estimate for the 
associated flow noise is obtained. The form of the low-wavenumber cross-spectral 
density of pressure on the surface of an infinitely long, rigid circular cylinder of radius 
a due to a statistically stationary turbulent boundary-layer flow a t  a low Mach 
number is determined. Viscous effects are ignored. It is shown that, in contrast to the 
case of an infinite plane surface, the pressure spectrum is finite everywhere in the 
wavenumber plane (k, n l a )  except for a logarithmic, integrable, singularity a t  the 
acoustic wavenumber corresponding to the axisymmetric mode (nla = 0) ; k and 
n l a  being, respectively, the downstream and circumferential wavenumber. For 
non-axisymmetric modes (Inla1 > 0 ) ,  the spectrum has two finite peaks in the 
radiative domain JkJ < w / c ;  w being the frequency and c being the sound speed. For 
w a l c  large, the peaks occur in the vicinity of the total acoustic surface wavenumbers 
K = & w / c  ( K  = (k2+n2/a2) i )  and the principal contribution which determines the 
peak characteristics can be identified as being due to creeping rays emanating from 
turbulent sources on the cylinder out of the line of sight of the associated receiver 
point. For large value of w a l e ,  the point pressure spectrum and the associated 
radiated sound vary logarithmically with (wa le) : ;  corresponding estimates for 
cylinders of moderate and small radius are also obtained. For an almost plane 
cylinder, it is shown that the effect of curvature may be included by a suitable simple 
modification of the form of the pressure spectrum for an infinite plane surface. 

1. Introduction 
The pressure fluctuations induced by a turbulent boundary layer over a rigid 

surface have frequencies w which are typically O ( U , / A ) ,  where A is the boundary-layer 
thickness and U ,  is the speed with which the boundary-layer eddies convect. The 
fluctuations induce self-noise, cause structural vibrations and radiate sound. The 
cross-correlation of surface pressure is a measure of the intensity of these effects, so 
it  is of interest to  study its characteristics. 

For flow over a plane surface a t  low Mach numbers M = U c / c ,  where c is the speed 
of sound, a typical plot (for example, Chase 1980) of the cross-spectral density of wall 
pressure against streamwise wavenumber (figure l a )  features a broad peak a t  the 
convective streamwise wavenumber O ( w /  U,) together with a relatively narrower 
peak a t  the critical (lower) wavenumber I K J  = w / c ,  where K is the total surface 
wavenumber (k2 + k$. Thus the two peaks are fairly well apart and it makes sense to 
consider the characteristics of the spectral density in the vicinity of the two peaks 
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FIGURE 1 ,  ( a )  Typical fixed-frequency cross-spectral density of pressure on a plane surface with 
k, = 0. The radiative domains in the wavenumber plane for the plane surface and for a circular 
cylinder are shown above. ( b )  The coordinate system. 

separately. The characteristics of the pressure spectrum in the vicinity of the 
convective peak are principally governed by incompressible mechanics, while the 
low-wavenumber characteristics for I K (  < w / c  are, as noted by Ffowcs Williams 
(1965), governed by the effects of compressibility. Here, we shall be concerned with 
the latter characteristics of the spectral density. For a fixed frequency, the 
lengthscales associated with low wavenumber considerations are large compared 
with those assoiiated with viscous diffusion, so the fluid may be regarded as 
inviscid. 

If the plane surface is of infinite extent, then the spectral density of surface 
pressure has a non-integrable singularity a t  the acoustic wavenumber, the spectral 
density being proportional to  the response function (w2 /cz )  1 ~ '  -wZ /c2 ( - ' .  Thus for a 
given non-zero frequency, the contribution to the correlation area from the low- 
wavenumber domain of the wavenumber plane is infinite! Apparently, in the 
Lighthill (1952) formulation, no allowance is made for the weak interaction of the 
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sound field of a turbulent source element with the turbulence through which it 
propagates, so that it does not decay fast enough with distance for the integrated 
contribution from distant acoustic sources in the infinite plane to  be finite. Although 
damping of the sound field due to turbulence is a slow process, over a distance 
O(M-2c/o) ,  it is significant enough to make the integrated contribution bounded 
(Crow 1967) ; the effect of viscous surface shear also acts over a comparable distance 
(Howe 1979). At low Mach numbers, the distances involved are rather large and if the 
turbulent boundary layer extends over a region with typical dimension L 4 M - 2 c / ~ ,  
the damping can be ignored and the neglect of interaction of sound with turbulence 
in Lighthill’s formulation is justified. For a finite value of L (Ffowcs Williams 1965, 
1982 ; Bergeron 1973), the singularity a t  the acoustic wavenumber is integrable. 
Away from the acoustic wavenumber, ( K ~ - - W ~ / C ~ ~  P wlcL,  the spectrum coincides 
with that for the infinite plane. The coefficient of the point pressure spectrum is 
proportional to In ( w L / c ) .  (See also recent work of Howe 1987.) 

Here we consider a turbulent boundary-layer flow over a smooth infinitely long 
rigid cylinder of radius a ,  and determine the associated cross-spectral density of 
surface pressure using the Lighthill formulation. Our principal aim is to  investigate 
how the cylindrical geometry may modify the nature of the power spectrum in the 
vicinity of the acoustic wavenumber from the known form for a plane rigid surface 
in the absence of any acoustic damping by turbulence or viscosity. The effect of 
having a non-rigid surface, which, as shown by Dowling (1983), can be significant in 
underwater applications, is therefore excluded here. The effects of boundary-layer 
growth and mean shear are also ignored; the former is expected to  smear to  a small 
extent the bandwidths associated with pertinent frequencies, while the available 
evidence for a plane surface (Dowling 1983) suggests that for low-Mach-number 
underwater flows the latter effect is small. Further, the neglect of viscous effects 
implies that the no-slip condition a t  the surface of the cylinder must be abandoned ; 
however, as in the case of the plane surface, the slip velocity here does not contribute 
to  the spectral density. (The author is grateful to Professor J. E. Ffowcs Williams for 
drawing his attention to this point.) The turbulent boundary layer is assumed to be 
statistically stationary, transient motions based on initial conditions having decayed 
away. 

I n  $2, Lighthill’s (1952) equation for small density fluctuations is presented and 
used to derive an expression for the pressure in terms of the unknown nonlinear 
source terms associated with Reynolds stress. 

I n  $3, an expression for the cross-power spectral density of surface pressure is 
obtained in terms of a product of a response function associated with the cylindrical 
geometry and a term essentially involving the source functions. The spectrum for a 
plane surface is obtained from this expression in the appropriate limit of letting the 
radius of the cylinder become infinite. The result is in agreement with that obtained 
by Bergeron. 

I n  $4, the form of the spectrum in the low wavenumber domain is considered. For 
a cylinder, the radiative domain corresponds to the strip (k( < w / c ,  where k is the 
streamwise wavenumber (see figure 1 a ) .  When considering low wavenumbers, the 
term involving the source functions is expected to be well behaved (see Bergeron 
1973) and the nature of the spectrum is principally governed by the response 
function. If n l a  denotes the azimuthal wavenumber, then for nla = 0 the response 
function has a logarithmic, integrable, singularity a t  the acoustic wavenumber. For 
n/a+ 0, the response function has finite peaks at K = & K, where (wz/c2)  + (nz/uz)  > 
KT, > 02 /cz  ; the peaks become broader and lower with increasing values of n /a .  Away 
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from the peaks, the response function is well behaved and decays to zero as I K I  + 00. 

Thus, again in contrast to the case of the infinite plane surface, the low-wavenumber 
contribution to the point spectrum is finite, and is estimated in $4. 

Three cases are considered: (a )  a small cylinder, A < a 4 c /o ;  (b)  a cylinder of 
radius comparable with the acoustic wavelength; and ( c )  a large cylinder, a 9 c /o .  
In  case (a) ,  the principal contribution to the point spectrum has a coefficient of 
O(A/a)4. For n / a  = 0, the pressure spectrum is in agreement with the leading-order 
approximation obtained by Chase & Noiseux (1982) for axisymmetric flow, although 
the extra terms in the expression for the pressure spectrum, suggested by these 
authors as being concomitant to the slip velocity at the surface, in fact do not 
arise. 

I n  case ( b ) ,  the point spectrum is estimated by assuming that the term involving 
the source function can be approximated by its value a t  a fixed low wavenumber and 
numerically integrating with respect to k the summation of the response function 
over n. 

I n  case ( c )  it  is shown that, for large a, the coefficient of the peak value of the 
pressure spectrum is proportional to M4(wa/U,)2n-f and the width of the peak is 
O(n$/a). Further away from the peaks, the spectrum coincides with that for an 
infinite plane surface. This suggests that for an almost plane cylinder, the effect of 
finite curvature may be allowed for by approximating the response function by 

where /3 is O((wa/c)-i) and varies with the wave-vector angle. Then, for non-zero 
values of n la ,  the response function has a peak value p2 and peak width 0(/3). For 
n / a  = 0, the approximate response function is singular a t  the acoustic streamwise 
wavenumber ; however, except in the case of axisymmetric flow (considered here for 
the purpose of comparison), the contribution to  the point spectrum is finite with 
a coefficient proportional to In ((wa/c)g). This contribution corresponds to that 
from equivalent turbulent sources distributed over a finite plane disk of radius 
L = O(af(o/c)-i). For this value of L, L-' is the exponential decay rate of creeping 
rays on a cylinder (Jones 1979). Thus the point pressure spectrum is finite, the 
dominant low-wavenumber contribution to the point spectrum being due to creeping 
rays emanating from turbulent sources within a distance L (measured along the 
surface of the cylinder) of the point. It may be noted that the contribution implied 
by ray theory from sources in line of sight of the point corresponds to that from 
equivalent sources distributed over a plane disk of smaller radius L = O(aA)i,  w A / c  
being very small for low-Mach-number flows. Hence, in approximating the low- 
wavenumber contribution to the point spectrum or sound intensity i t  is insufficient 
to consider individual contributions merely from turbulent sources directly in line of 
sight of the point ; the creeping-ray contribution from sources out of the line of sight 
also needs to be considered, it being the dominant contribution. 

It has recently come to light that Howe (1987) has, independently, considered the 
effect of general surface curvature (in both streamwise and transverse directions) on 
the singularity at the acoustic wavenumber. Having identified the dominance of the 
creeping-ray contribution to  the spectral peak a t  the acoustic wavenumber, he 
evaluates the leading-order effect of general wall curvature. One consequence of 
having a general curvature is that the logarithmic singularity corresponding to 
axisymmetric spectral elements in the case of a cylinder, referred to above, is 
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removed and the spectrum is finite everywhere. He suggests an approximate 
response function, which for a cylinder is essentially similar to  the above ; the main 
difference is that for k, > 0, he estimates the peak to lie a t  the acoustic wavenumber 
instead of a t  its true position just off the acoustic position. Consequently for k, < w / c ,  
he slightly underestimates the height of the peak. 

The approximate response function for an almost plane cylinder cannot be used in 
the case of axisymmetric flow; this is considered separately in Appendix B. It is 
shown that the contribution to the point spectrum is again finite but with a 
coefficient proportional to In ( o a l c ) .  These features are discussed in $5 where, 
following Bergeron, the estimates for the intensity of radiated sound for turbulent 
flow past a cylinder are obtained. 

2. Basic theory 
We consider turbulent boundary-layer flow over an infinitely long, smooth and 

rigid circular cylinder of radius a .  The flow velocity away from the cylinder surface 
is uniform and parallel to  the axis of the cylinder. The fluid is regarded as inviscid, 
viscous effects being negligible in the present low-wavenumber acoustic con- 
siderations. This implies that we must allow for a slip velocity at the cylinder surface, 
requiring only the normal component of velocity to vanish at the surface. We 
approximate the mean speed in the turbulent boundary layer by a constant U,,  
which is of the same order as the speed in the outer stream. 

Further, we assume a linearized equation of state, 

P-PO = c2(P-p0)7 (2.1) 

where p(x, t )  and p(x ,  t )  respectively denote fluid pressure and density andp,, p, and c 
are constants, c being the speed of acoustic waves. The linear approximation is 
adequate for considerations of flow a t  low Mach numbers. 

Then, in a frame of reference fixed with respect to the stream, the pressure field is 
governed by Lighthill’s equation (Dowling, Ffowcs Williams & Goldstein 1978), 

(i,j  = 1 ,2 ,3 ) ,  

where the summation over Cartesian components is implied, ui denoting the i th 
component of fluctuating fluid velocity with zero mean value. The density p in the 
term on the right-hand side has been replaced by its ambient value p,, consistent 
with the approximation (2.1) ; both approximations imply errors of O(M2)  in (2.2). The 
equations tacitly assume that the effect of the sound field on turbulence is negligible 
for flow a t  low Mach numbers (cf. Crow 1970). 

I n  terms of cylindrical coordinates x, r ,  0, where Ox is along the length of the axis 
of the cylinder (figure 1 b ) ,  on denoting the fluid velocity components u,, ur, ue, (2.2) 
may be written 

where 
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and where, without ambiguity, 

T,, z TI, = poujl-, T,, = T,, = pou,ur, Tz8 = TI, = pousue, etc., 

with 

The momentum equations imply that aplar = TB,/r a t  r = a. Further, we note that 
qj and its derivatives vanish as r+  00 so that 

( - $ & - - ~ ) p  = 0 as r+  co 

That is, p is a wave field as r +  00 and we require that it is outgoing in the limit. In 
general, the boundary conditions as x + co within the boundary layer are lacking. 
Here we confine attention to the case where Tij and its first and second derivatives 
also vanish in this limit, so that p again satisfies the wave equation in the limit. 
Hence, we require that p is an outgoing wave field everywhere a t  infinity. A solution 
to (2.3) for p may be obtained by introducing a Green function, G ;  G(x, t lx , , t , )  
satisfies 

together with the causality condition and the boundary conditions aG/ar = 0 a t  
r = a ,  and C: an outgoing wave a t  infinity. We proceed to solve for G by means of 
Fourier transforms, using an asterisk to denote the Fourier transform, defined for 
any function A ( x ,  ., 8, t )  as 

so that (2 .5b )  
w J  J - a n = - m  

We take Fourier transforms with respect to x and t (and finite Fourier transform with 
respect to 0) of (2.4), writing G*(r, k, n, o 1 x,, to)  for the transform of G(x, t 1 x,, to) ,  to 
obtain 

(2.7 1 where E,  = e-in80-ikx,-iwt, 

A solution which satisfies the appropriate boundary conditions is given by 

where g ( s ,  t )  = Kn(ys) [ K k ( y a ) I n ( y t ) - - I k ( ~ a )  Kn(y')l 

and Kn,  I n  are modified Bessel functions. For y2 > 0, G* decays to zero exponentially 
as r + 00. For y2 c 0, G* corresponds to an outgoing wave if that branch of y is 
chosen for which its imaginary part is positive. in particular, 
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Then it can be shown that the pressure at  a field point is given by 

the boundary conditions v, = 0 and aG/ar = 0 at  r = a ,  and the radiation condition 
at  infinity ensuring that the surface integral vanishes. Transient motions based on 
initial conditions are ignored. 

Since qi(i,j = 1 , 2 , 3 )  and its first derivative vanish at infinity and Tri(i = 1 , 2 , 3 )  
and aT,,/ar vanish at  the surface of the cylinder, ( 2 . 1 0 ~ )  can be integrated by parts 
to give 

Equation (2.10b) was given by Dowling et at?. (1978) in terms of Cartesian tensors. 

3. Cross-power spectral density 

correlation of pressure on the surface of the cylinder is given by 
Assuming a statistically stationary boundary layer of thickness A ,  the cross- 

P ( z - 2 , 0 - 6 , t - l )  = ( p ( z , a , 8 , t ) p ( ~ , a , s " , l ) ) ,  (3.1) 

where ( ) denote an ensemble average. The cross-power spectral density of the 
surface pressure is given by the Fourier transform of P and is denoted here, in view 
of the convention defined by (2 .5) ,  by P*(lc, n, w ) .  We substitute for p in (3 .1)  from 
(2.10b),  with G* given by (2 .9) ,  and write JGtm(r, r", k,n, w )  (i,j, 1,m = 1 , 2 , 3 ,  the suffix 
2 ,  without ambiguity, being synonymous with suffix ' r ' )  for the Fourier transform 
of the source functions, 

Jipm(z-f ,r ,P,8--B, t - i )  = < q j ( x , t ) ~ , ( ~ , t " ) ) .  (3 .2)  

Then on defining 

(3.3) 

(3 .4)  

y being as in (2 .7) ,  it can be shown that 

P*(k, n, o) = p: UEA5 laF(n, ya)I2&k, n, w ) ,  (3 .5)  

with 

and (3 .7 )  
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where 

the indices taking the values i , j ,  1, rn = 1 , 3  and the summation convention being 

( w A / U , ) ,  (Ala)]  are non-dimensionalized functions and are defined in Appendix A. 
The details of the spectral form of the source functions JGlm, J&,, etc. are not 

available. At low Mach numbers, M ,  we assume that they are well behaved in M and 
can be expanded in a Taylor series about M = 0. Thus, to leading order, the source 
functions are given by incompressible flow theory. By expanding the integrand in 
(A 4), it can be shown that the corresponding coefficients f ,  g, h are, to leading order, 
also given by incompressible flow theory. We further assume that at low streamwise 
wavenumbers, k A  < 1,  these coefficients are well behaved in k and for sufficiently 
small values of k can be approximated by their values at k = 0 ;  in fact, we use these 
values to estimate the size of the coefficients in the region kA < 1 .  In  the low- 
wavenumber ( k A  < 1) approximation, we write 

implied. Jl l (kA,n ,  ya, ( ~ A l u , ) ,  ( A l a ) l ,  g W A ,  n,  ya, ( w d l u , ) ,  ( A l a ) ,  and @ A ,  n, ya, 

with similar expressions for g and h, so that in the approximation f ,  g, h are devoid 
of any structure in k and are unaffected by compressibility effects. We denote the 
low-wavenumber approximation to R ( k ,  n, w )  by 

where the explicit dependence on A / .  is suppressed. We denote the corresponding 
low-wavenumber approximation to P * ( k ,  n, w )  by P : ( k ,  n, w ) .  

It may be noted that for large k ,  luF(n, yu)I2 - K - ~ ,  so that from (3.5),  and in view 
of (3.7), 

- 

PZ ( k ,  n, w )  = O(pi U: A 5 ~ ' ) .  (3.9) 

Further, R ( O , O ,  w )  = (3.10) 

and P*(O, 0, w )  = p2U: A5 (3.11) 

For non-zero values of walc, F(0,  i(wa/c)) is finite so that P*(O, 0, w )  is finite. This is 
consistent with the corresponding result for a plane surface (Ffowcs Williams 1965). 
However, if we let c +  CO, so as to recover the incompressible case, we obtain 

(3.12) 
h 

P*(O, 0, w )  +p2U: A 5 3 .  
U2 
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Thus, the surface-pressure spectrum in the incompressible limit is finite. This is 
unlike the case of the plane surface, where P*(O, 0, w )  vanishes in the incompressible 
limit; this result is recovered from (3.12) by letting a+ co. We can infer from (3.12) 
that the surface pressure spectrum for incompressible flow is finite in K a t  K = 0. This 
result agrees with that obtained by J. E. Ffowcs Williams (personal communication) 
and Chase & Noiseux ( 1 9 8 2 )  who considered the axisymmetric case for compressible 
and incompressible flow for ya 4 1. However, the extra contribution to the pressure 
spectrum, suggested by the latter authors as being concomitant to the slip velocity 
a t  the surface, do not arise if, as we have shown, the correct boundary condition for 
inviscid flow, namely ap/i3r = ToB/r a t  r = a, is applied ; Chase & Noiseux assume, 
incorrectly, that i3ppli3r = 0 a t  r = a. 

3.1. Plane-surface limit 
The power spectrum for an  infinite plane surface is recovered from (3 .5)  by taking the 
limit n+ 00, a+ co but n /a+ k,, a finite value. We note that in this limit 

(3.13) 

where y = r - a  and where for Ta < 0, that branch of r is chosen for which its 
imaginary part is positive. Then, in the limit, writing 

n 

a 
- k ,  (3.14) 

and extending the definition of Fourier transform in (2.5) with respect to 8 to the 
spanwise direction of the infinite plate, we have from (3.7), 

R m ( k ,  k,, w )  = lim R ( k ,  n, w ) ,  
n+x 

nla+k, 

'm(k7 k 3 , ~ )  = ~ ~ 8 i  8j 8, 8 m f ~ j l m - 2 ~ ~ 8 l ( r ~ e m f 2 2 1 m  -21r2t8i h t z z l )  

+r4f,,--4Ot~ R e ( ~ ~ 2 g i 2 2 1 + K 2 ~ 6 1 8 m g i 2 1 m )  ( i , j ,Z ,m = 1,3),  (3.15) 

where the plane-surface limit is implied in the definitions (A 3) off, g and h. Thus, 
from (3.5), the cross-power spectral density for an infinite plane surface is 

(3.16) 

In  the low-Mach-number, low-wavenumber approximation, f ,  g and h, to leading 
order, are again assumed to be devoid of any structure in k and to be approximately 
unaffected by compressibility. We further assume that they are well behaved in k,  
and for sufficiently small values of k,  can be approximated by their values at k ,  = 0. 
Thus in (A 3) we write 

etc., and denote the corresponding approximation to  R m ( k ,  n, w )  by 
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and the corresponding approximation to the pressure spectrum P:(k, k,, w )  by 

(3.17b) 

Equation (3.17 b) agrees with the corresponding expression given by Bergeron (1973). 
We note from (3.15) that R m ( k ,  k,, w )  is non-zero a t  the acoustic wavenumber for 
which r= 0, so that, in view of (3.17b), P z , ( k , k , , w )  is singular there and the low- 
wavenumber contribution to the point pressure spectrum, given by 

Pz&) = J/KA<lPze(k> k3, w )  dk, dk3 (3.18) 

is infinite, the singularity being non-integrable. This feature is due to the infinite 
extent of the surface. The sound field of an acoustic source does not decay sufficiently 
fast with distance that the contribution to the point pressure spectrum from the 
acoustic field due to a plane infinite layer of turbulence is finite. Ffowcs Williams 
(1965, 1982) and Bergeron (1973) showed that for a plane surface of finite extent, an 
appropriately defined point pressure spectrum is finite and varies as the logarithm of 
the dimensions of the plane. 

4. Spectrum in the radiative domain 
We expect that  the acoustic waves generated by the flow in the boundary layer have 

frequencies w = O ( U , / A ) .  Thus for the low-Mach-number flow under consideration, 
o A / c  6 1. 

The radiative domain in the wavenumber plane for the surface pressure spectrum 
associated with a circular cylinder extends over the infinite strip Ikl < w / c ,  in 
contrast to that for a plane surface where it extends over the circle K < w / c .  
However, from the evidence available for a plane surface, we expect that for 
In1 % wa/c ,  the pressure spectrum will decay as (wa /cn)2 .  Thus the main contribution 
is still expected to come from K = O ( w / c ) .  

We note that for large values of n 

(4.1) 
1 

lap(% ya)I2 - - 
r2' 

In1 > lyal, 

where T(k, n) is given by (3.4), so that laF(n, ya)I2 is O ( a 2 / n 2 ) .  Since the pressure 
spectrum P*(k,  n,  w )  is expected to be of this order in the azimuthal wavenumber, the 
factor R ( k ,  n, w )  in (3.3), to leading order, must be independent of n for large n. For 
k 4 A-' and In1 > aA-l we may, there estimate R ( k , n , w )  by (w /c )4Rl (kc /w ,c /wA,  
w A / U , ) ,  where R , ( k c / o ,  nclwa, w A / U , )  is defined in (3.8). 

Thus for k 4 A-l ,  we have from (3.5) and (3.8) that  the density of the surface 
pressure spectrum is approximately given by 

The factor R, is devoid of any singularities and if the source integrals f (n ,  w A / U , ) ,  
g ( n , o A / U , )  etc. in (3.8) are all of the same order, we expect that  i t  is a fairly well- 
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behaved function of the wavenumbers for k < A- l .  Thus the nature of the pressure 
spectrum there is principally determined by the factor I (wa /c )  F ( n ,  ya)I2. 

In  the radiative region, we may use the properties of the Bessel functions to 
express 1F(n, yu)l2 in terms of Hankel functions, 

where 

For a given value of wale, IF(n, ya)I2 is plotted against the streamwise wavenumber 
in figure 2(a)  for various values of n. For n = 0, IF(%, ya)I2 is singular at k = + w / c ,  
while for a non-zero value of n such that In( < N = O(wa/c) ,  it has finite peaks a t  
positions k = k k,, where wa/c2 > k& > w 2 / c 2 - n 2 / a 2 ;  in fact, for given n, k ,  
corresponds to the value of k for which (ya)2-n2 = -n2(1 + lyaF(n, y ~ ) l ~ ) - ~  (we 
denote k& + n2/u2 by K:). The peaks become broader and lower with increasing n. For 
JnJ > N ,  \I”(., yu)I2 has a maximum value a t  k = 0 from which it decays according to 
(4.1). 

In the vicinity of the acoustic streamwise wavenumbers, k = k w/c( lynl+ 0), 

so that Jwa/cF(0, ya)I2 is logarithmically singular a t  k = + w / c .  From (3.7) and (3.8), 
for non-zero values of fllll, Rt(kw/c ,  0, w A / c )  is finite, so that P,* (k ,O ,w)  is also 
logarithmically singular a t  the acoustic wavenumber. However, unlike the case of 
the plane surface, the singularity is integrable. Further, for n S. 0, I(wa/c)F(n, 0)12 is 
finite and decays with increasing n as (wa/nc)2.  Thus the contribution P , * c r ( ~ ,  8 )  to the 
point spectrum P*(w) from the acoustic region, IyI < we/c ,  e < 1, is finite and is 
approximately given by 

If we substitute the expression (4.2) for PZ(k, n, w )  into (4.5) and approximate the 
factor fit in P,*, for each n by its value a t  the acoustic wavenumber with n = 0, then, 
using (4.4), we can show that 

(a )  Case w a / c  < 1 

When the radius of the cylinder is small compared with the acoustic wavelength 
( A  < a < c / o ) ,  for the n = 0 mode, the low-wavenumber approximation, P,*(k, 0, w ) ,  
to spectral density is, from (4.2), (3.7) and (3.8), on approximating F ( n ,  y a )  by (4.4), 
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FIGURE 2. (a) Variation of the response functicn I(wa/c)P(n, ya)I2 with the streamwise wave- 
number k for different values of n with wale = 8. I(wa/c)F(0,ya)12 has a logarithmic singularity 
a t  k = w / c .  ( b )  Variation of the response function I(oa/c) F(n, ya)I2 with k for different values of 
wale with n = 4. 

This can be shown to be in agreement with the leading-order approximation obtained 
by J. E. Ffowcs Williams (personal communication) and by Chase & Noiseux (1982) 
(but see remarks following (3.12)). 

For other values of n, some knowledge about the structure of the coefficients 
f (n ,  w d / U , ) ,  etc., is necessary. However for oa/c < 1, the multiplicative factor 
lyaF(n, ya)I2 is relatively much smaller. Thus, provided this factor principally 
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governs the size of the spectral density for n i 0, the contribution P,*(w) to the point 
spectrum P*(w) from the low-wavenumber domain IkJ < a-l, given by 

= O(pf UEA ($Po). 
( b )  Case walc  = O(1) 

When the radius of the cylinder is comparable with the acoustic wavelength, the 
dominant contribution to the point spectrum from the low-wavenumber domain 
corresponds to moderate values of n. For a given value of n,  the variation of the 
response function I(wa/c) F(n,  ya)I2 with walc is shown in figure 2 ( b ) .  For w a l c  2 n,  the 
response function has a peak in the radiative domain, with the peak value increasing 
and peak width decreasing with increase in w a l e  ; for walc < n, the maximum value 
of the function corresponds to k = 0. 

We define the line spectrum as 
1 

a n  
P * ( k , w )  = - Z P * ( k , n , w ) .  (4.9) 

In the low-wavenumber domain, lkl < A - l ,  

The line spectrum has a logarithmic singularity at the acoustic streamwise 
wavenumber. We can estimate P*(k,  w )  by expanding the factor R, for each n about 
n = 0, y = 0 and retaining only the leading-order term ; that is, for each n replace 
Rt in (4.10) by Rt(l, 0, wA/U,) .  The corresponding P*(k, w )  is shown in figure 3 (a)  for 
various values of wale and the expected contribution to the point spectrum from the 
low-wavenumber region is shown in figure 3(b ) .  

( c )  Case w a l c  % 1 
If the radius of the cylinder is large compared with acoustic wavelength, we can 
approximate the factor Rt in (4.2) by the corresponding factor for an infinite plane 
surface with k, = n / a .  Thus the surface pressure spectrum for K 4 A-1 is 

where Rwe(kc/w,k3c/w,wA/U,)  is given by (3.17). For each non-zero n,  the 
deterministic factor I(wa/c)F(n, ya)I2 has a dominant peak in the vicinity of the circle 

In  the case n = 0, the behaviour near the acoustic wavenumber is again dominated 
K = O/C.  

by the logarithmic singularity of the deterministic factor, and 
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FIGURE 3. (a )  Estimated low-wavenumber variation of the line spectrum 

with k for various values of wale .  The line spectrum has a logarithmic singularity at k = fw/c .  
( b )  

plotted against w a l e ;  PT(w) is the estimated contribution to  the point spectrum from the low- 
wavenumber domain. 
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on substituting for Rmt( l ,  0, w A / U , )  from (3.17) in (4.11). Away from the singularity 
we note that 

For non-zero values of n, we write a = n / k ,  in IF(%, ya)I2 so that 

= (@a)2 = n2-( I 'a )2  = n2 1 - - [ (@'I; 

(4.13) 

(4.14) 

where I' is given by (3.4). With wale large, the peaks correspond to n large and 
k, = O(o/c). For moderately large values of n, IF(%, in( 1 - ( r /k , )2 )$ l z  is plotted against 
( T / k , ) 2  in figure 4. For each n, the peak in IFI2 corresponds to 1 2 ( r / k 3 ) z  > 0 ;  we 
note that lr/k31 d 1 denotes the radiative region k2 < w z / c 2 .  As n is increased, the 
position of the peak moves closer to r2 = 0, while the height and the width of the 
peak decrease. For large n, using the asymptotic expansions for Hankel functions, we 
can show that 

where 

(4.15) 

and Ai, Bi are the Airy functions. 
For lI'/k81 % n-4 (note that lr/k31 may be less than l ) ,  the argument off(x) in (4.15) 

is large and we may use the asymptotic expansions for Airy functions to show 
that 

(4.16) 

Substituting (4.13) and (4.16) into (4.12) and noting that by similar arguments to 
those above, away from the acoustic wavenumber (A 4) is approximated by (A 6), we 
have that 

where Pz, (k ,  k,, w )  is the low-wavenumber spectral density for pressure on an infinite 
plane surface and is given by ( 3 . 1 7 ~ ) .  Thus, except for the vicinity of the total 
acoustic wavenumber, the spectral density for surface pressure on a large circular 
cylinder may be approximated by that for an infinite plane surface. 

For /I'/k31 < 1, we have 

so that 

(4.18) 

(4.19) 
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FIGURE 4. Variation of (F(n,ya)I2 with (T/k,)2 for large values of n ;  r2 = K ~ - w ~ / c ~ ,  k, = n/a 
and ( 7 ~ ) ~  = a z ( k 2 - ~ 2 / ~ 2 )  = nz( ( I ' /k , )2 - l ) .  

The maximum value of the right-handAside of (4.19) approximately corresponds to 
the value of X > 0, for which (d/dX) If(X)lz = 0 and is given by 

(61 = din-;, do = 0.837, (4.20) 

that is, where K' = ( w / c ) ,  + d i  n-iki. In the neighbourhood of the maximum 

(4.21) 

where r; = r 2 - d i n - i k i ,  and do, = 2.288. 

for w a l c  b 1, n 9 1 is 
Substituting (4.19) into (4.1 l ) ,  we have that the low-wavenumber pressure spectrum 

The peak value P,*,,, is approximately give by 

where tan x = a k / n ,  so that P1*,,, = O(M4(wa/UC)'nd) or equivalently O(M4(w2/UE) 
ask;;). Although the peak is finite, its value is large for large values of the cylinder 
radius. The peak width is O(nf /a) ,  or equivalently O(kia- i ) .  
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We write 

4.1.  Effect of curvature on an almost plane cylinder 

wa A = -  
C 

(4 .24)  

and note that, in view of the above considerations for h % 1, we may approximate 
the factor IhF(n, ya)I2 by 

(4 .25)  

where p(x) = do I cosxl%/h;, and x is as in (4 .23)  and do is given by (4 .20) .  The 
approximate function has a maximum a t  K = & ( w / c )  ( 1  -pz))-i. Except for x = $K, the 
maximum value is finite and equal to 1/p2  and the width of the peak is of O(p).  Away 
from the peak, for 1 ~ ~ - w ~ / ~ ~ 1  9 ( o 2 / c Z ) h f ,  the approximation reflects the behaviour 
of the corresponding deterministic factor for the infinite plane surface (this being 
exactly so for K ~ - w ~ / c ~  > (w2/c2))pz( l  - / I z ) ) - ' ) .  For x = in, the approximation is still 
singular but, except for the case of axisymmetric flow, we show below that the 
singularity is integrable. The axisymmetric case needs to be considered separately 
and is dealt with in Appendix B. 

If we let n l a - t k , ,  then, from (4 .11) ,  the surface pressure spectral density is 

This approximate form differs from that given recently by Howe (1987) in that  
instead of the factor ( IK2(  1 -pZ)  - wz/czl + K~/I ' ) ) - '  he chooses to use ( ~ K ~ - W ~ / C ~ ~  

+ (w2/cz))p~)- '  where Po = (0.92/0.837)/?.  It can be shown that for k,  > 0 the latter 
choice underestimates the height of the peak by the O( 1) factor p2/Ip: ; the difference 
arises since Howe approximates the position of the peak to lie a t  the acoustic 
wavenumber, I K I  = w / c .  

The contribution to the point pressure spectrum from the low-wavenumber 
domain, K 4 A-', is approximately given by 

(4 .27)  

where we have replaced the summation with respect to n by the appropriate integral 
with respect to the wavenumber k,.  

We can estimate PF(w) if we approximate the factor 

in (4 .26)  by its value a t  the total acoustic wavenumber, I K I  = w / c ;  that is, if we 
approximately set i t  to R',,(sinX, cosx, w A / U , ) .  For then 
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The integral can be evaluated approximately to give 

where w1 = w A / U , ,  and 

B(5) = B [ f i i j j ( E )  +fi,ij(t)l (i>j = 1 > 3), 

the summation convention being implied and f i j l m  being the functions of w1 which 
appear in the definition of Rmt. In  terms of the Mach number M ,  

M o l a  -- 
PT(w) = 27rM4p; U3, d Bl (wl )  [ In ( 2di2 r M J " r ) + O ( ( ~ )  - ' , M 2 ) ]  (4.296) 

where B l ( w l )  = wtB(w, ) .  That is, 

so that the logarithmic factor is somewhat greater than 
expression in the axisymmetric case considered in Appendix 

( 4 . 2 9 ~ )  

in the corresponding 
B. 

5. Discussion 
We have shown that apart from a logarithmic, integrable, singularity a t  k = w / c ,  

n / a  = 0, the cross-spectral density of pressure on the surface of a cylinder due to 
statistically stationary turbulent flow is finite, even though the flow is regarded as 
being inviscid. For each non-zero n, n < w a / c ,  it attains a peak value a t  a total 
wavenumber K, where 

w2 n2 0 2  

c2 a2 c2 

for n such that adp1 > In1 > wale,  it  has a maximum value a t  k = 0. For w a / c  $ 1, 
the peak value has a coefficient, O [ ( w a / ~ ) ~ n - ; ]  and a width O [ ( w / c )  (wa/c)-']  ; away from 
the peak, the spectrum coincides with that for an infinite plane surface. The peak 
value is large but finite. 

The expression (4.2) for the low-wavenumber pressure spectrum contains a 
number of unknown functions of frequency which need to be determined 
experimentally. Some of these can be determined by considering the radiated sound, 
as suggested by Bergeron (1973). If we write P(6,  rl,  r , [ )  for the pressure correlation 
at  a fixed distance rl  > a + A ,  

-+- > K k  > -; 

P ( x 4 , r 1 , 0 4 , t 4 )  = ( p ( x , r l , O , t ) p ( ~ , r l , e , ~ ) ) ,  (5.1) 

then, from (2.10), we can show that for A / a  < 1, the power spectrum, P*(rl k, n, w )  is 
approximately given by 

P*(rl ,  k ,  n, w )  = IRn(yr1)12p*(k, n, w ) ,  
K n  (ya)I2 

where P*(k, n, w )  is the power spectrum for the surface pressure and is given by (3.5), 
and y is given by (2.11). For A 4 r l -a  4 a,  we have, approximately, 

where P,*(k, n, w )  is given by (4.2). 
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The intensity of radiated sound is given by 

For a small cylinder, d < a < c / w ,  we have from (4.8) 

46 1 

(5.4) 

(5.5) 

For a cylinder of moderate size, wa/c = 0(1), we have from (4.10) that 

For a large cylinder, wa/c % 1, we have from (4.29) that 
I = 0 ( p o  U",c5). 

with 

B, (w)  as in (4.29b) and M the flow Mach number. In the case of axisymmetric flow, 
with o a / c  $- 1, we have from (B 8) that 

where 

I = p O %[., c5 ln(?)+~(i)] ,  (5.7) 

and fl l l l(wl) is defined in (A 3). 
It is interesting to note that for a plane surface of large but finite size of 

typical dimension L,  Bergeron showed that the intensity of radiated sound was 
O[p0(Uz/c5)  In (MLId)] .  With L replaced by L, = 4(2a2d)iM-4 in this expression, the 
logarithmic factor is the same as in the expression (5.6) ; the corresponding result for 
the axisymmetric case requires L to be replaced by a. The difference in the two cases 
reflects the dominance of different contributions to the intensity a t  a point close to 
the surface. In the non-axisymmetric case the dominant contribution arises from 
creeping rays emanating from turbulent sources within distance L, (measured along 
the surface of the cylinder) from the point, L;' being the decay rate of creeping rays 
on a cylinder. In  the axisymmetric case, we expect the dominant contribution to 
come from turbulent sources in line of sight of the point. 

The author is grateful to Dr Ian Roebuck for suggesting the problem and is 
particularly indebted to the late Dr Chris H. Hodges and to Dr Julian F. Scott for 
useful discussions during the preparation of this work. I am also grateful to Professor 
David G. Crighton, Professor John E. Ffowcs Williams and Dr Peter Brazier-Smith 
for useful comments. The work was carried out with the support of the Procurement 
Executive, Ministry of Defence. 
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Appendix A. Coefficients associated with the source functions 
With el, O3 and r defined by (3.3) and (3.4), we introduce 

Then the expressions f,  g, h in the factor B ( k ,  n, w )  of equation (3.7) are given by 

where the indices take the values, i, j, 1, m = 1, 3 ;  f, g, h are non-dimensional 
functions of ( k , n , w )  and the notation on the right-hand side of the expressions is 

In the low-Mach-number, low-wavenumber approximation, we expand the 
integrand in (A 4) about M = 0, k = 0 to obtain 

with similar expressions for [ f ] G  and [ f ] H .  

In  the appropriate limiting case of the plane surface (see §3.1), we set 

q51 = fjl = $h3 = $iJ3 = 1 (A 5) 
in the above and note that in this case 

Then the functions f,  g and h which appear in the expression (3.15) for R m ( k ,  k,, w )  
are defined by (A 3), (A 5) and (A 6) with subscript 0 replaced by z in the source 
functions J .  
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Appendix B: Axisymmetric case for wale 9 1 

case of axisymmetric flow is, from (4.11), 
For K < A-' and h = wa/c  9 1, the spectral density for the surface pressure in the 

where from (3.17) 

fi& 097) = t4f1111(Y) - 2C2[(t2 - l ) f 2 2 1 1 ( r l )  - 21% - 11 %221(Y)I 

+ (% - 1)Y0(rl) -46 R ~ { ( E ~  - ~ P [ ( E ~  - 1)  91221(~ )  + t2g1211(s)~). (B 2)  

The contribution to the point spectrum from the low-wavenumber domain is given 
bv 

P,*(O) = - "pW"' P:(k,O,o)dk. 
c -2 (w/c)  

If we approximate the factor f i m d ( k c / q  0, w A / U , )  in (B 1) by &( 1,0, w A / U , )  for all 
IkI < 2 ( w / c ) ,  then we can estimate P,*(o) by 

where y1 = (E2 - l ) i  and the upper limit of the integral is set to infinity since the 
integrand decays as l/E2 for large <. 

Now, for small values of Ihyll, 

and for large values of IhyJ, 

so that we can estimate the integral in (B 4) by 

where, el x e2 x u , A - ~ ,  a, being O(1). Hence, on evaluating the integrals in (B 7) ,  the 
point spectrum P,*(w) in the axisymmetric case is given by 

where M is the Mach number, M = U,/c  and o1 = w A / U , .  



464 M .  R. Dhanak 

R E F E R E N C E S  

BERGERON, R. F. 1973 Aerodynamic sound and the low-wavenumber wall-pressure spectrum 
of nearly incompressible boundary layer turbulence. J .  Acoust. SOC. Am.  54, 123. 

CHASE, D. M. 1980 Modelling the wave vector-frequency spectrum of turbulent boundary layer 
wall pressure. J .  Sound Vib. 70, 29. 

CHASE, D. M. BE NOISEUX, C. F. 1982 Turbulent wall pressure a t  low wavenumbers : Relation to 
nonlinear sources in planar and cylindrical flow. J .  Acoust. SOC. Am.  72, 975. 

CROW, S. C. 1967 Visco-elastic character of fine-grained isotropic turbulence. Phys. Fluids 10, 
1587. 

CROW, S. C. 1970 Aerodynamic sound emission as a singular perturbation problem. Stud. Appl. 
Maths 49, 21. 

DOWLING, A. P. 1983 The low wavenmber wall pressure spectrum on a flexible surface. J .  Sound 
Vib. 88, 11 .  

DOWLING, A. P., FFOWCS WILLIAMS, J. E. & GOLDSTEIN, M. E. 1978 Sound production in a 
moving stream. Phil. Trans. R. Soc. Lond. A288, 321. 

FFOWCS WILLIAMS, J. E. 1965 Surface-pressure fluctuations induced by boundary-layer flow a t  
finite Mach numbers. J .  Fluid Mech. 22, 507. 

FFOWCS WILLIAMS, J. E. 1982 Boundary-layer pressures and the Corcos model: a development to 
incorporate low-wavenumber constraints. J .  Fluid Mech. 125, 9. 

HOWE, M. S. 1979 The role of surface shear stress fluctuations in the generation of boundary 
layer noise. J .  Sound Vib. 65, 159. 

HOWE, M. S. 1987 The singularity at the acoustic wavenumber of the turbulent boundary layer 
wall pressure spectrum. Proc. R. SOC. Lond. A412, 389. 

JONES, D. S.  1979 Methods in Electromagnetic Wave Propagation. Clarendon. 
LIGHTHILL, M. J. 1952 On sound generated aerodynamically. I. General Theory. Proc. R. SOC. 

Lond. A211, 564. 


